

ASSESSMENT THE EFFICACY AND ECONOMIC OF INSECTICIDES AND BIO-PESTICIDES AGAINST MAJOR INSECT PEST COMBINATION OF BRINJAL (*SOLANUM MELONGENA* LINN.) cv. JB-64

Satyendra Patel, Rishikesh Mandloi, Sunil Prajapati^{*1}, A. K. Saxena and Ravindra Parmar² and Om Pal Singh³

Department of Entomology, College of Agriculture, J. N. K. V. V., Jabalpur- 482004 (Madhya Pradesh), India. ¹Department of Horticulture, College of Agriculture, J. N. K. V. V., Jabalpur- 482004 (Madhya Pradesh), India. ²Department of Plant Pathology, College of Agriculture Indore, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior - 452 001 (Madhya Pradesh) India

³Department of Plant Physiology, College of Agriculture, J. N. K. V. V., Jabalpur- 482 004 (Madhya Pradesh), India.

Abstract

The result reported that, efficacy of different insecticidal treatments against pest complex Emamectin benzoate @ 10 g.a.i/ha was found to be most effective as it recorded lowest infestation, of all the recorded pests followed by Pyriproxifen + fenpropethrin 500 ml/ha. Highest fruit yield was registered in Emamectin Benzoate @10 g.a.i/ha (120.66 q ha⁻¹), followed by Pyriproxifen+fenpropethrin 500 ml/ha (115.47 q ha⁻¹) as compared to control (60.07 q ha⁻¹), highest net profit per hectare was registered in Emamectin Benzoate @ 10 g.a.i/ha (Rs. 54572) with highest cost benefit ratio was registered in Pyriproxifen 10% EC + Fenpropethrin 15% EC @ 500 ml/ha(1:15.69). On the basis of the efficacy of different biopesticides treatments *Passilomyces fumosoresus* @ 11/ha was found to be the most effective as it recorded lowest infestation of all recorded pests followed by *Beauveria bassiana* @ 11/ha. Highest fruit yield was registered in *Passilomyces fumosoresus* @ 11/ha (85.06 q ha⁻¹), followed by *Beauveria bassiana* @ 11/ha (80.05 ha⁻¹), highest net profit was registered in *Passilomyces fumosoresus* @ 11/ha (85.06 q ha⁻¹), followed by *Beauveria bassiana* @ 11/ha (80.05 ha⁻¹), highest net profit was registered in *Passilomyces fumosoresus* @ 11/ha (85.06 q ha⁻¹), followed by *Beauveria bassiana* @ 11/ha (80.05 ha⁻¹), highest net profit was registered in *Passilomyces fumosoresus* @ 11/ha (85.06 q ha⁻¹), highest cost benefit ratio in *Passilomyces fumosoresus* @ 11/ha (85.36).

Key words : Brinjal, JB-64, insecticide, biopesticides, efficiency, economic.

Introduction

Brinjal (*Solanum melongena*), also known as eggplant or aubergine belonging to the family Solanaceae, is one of the common and popular vegetables grown throughout the world including India. In India, brinjal occupies 39.34 per cent (0.68 million ha.) of the world's area of 1.72 million ha. In Madhya Pradesh, brinjal occupies 0.23 million ha. area with a production and productivity of 2.81 million tonnes and 12.0 t/ha (NHB, 2012). Among the various causes of low productivity of the brinjal, one of the most important factors is the damage inflicted by the insect-pests. It is subjected to attack by number of insect pests right from nursery stage till harvesting (Regupathy *et al.*, 1997). The yield loss due to the pest is to the extent of 70-92 per cent (Reddy and Srinivas, 2004; Jagginavar *et al.*, 2009; Chakraborti and

Sarkar, 2011). The infested fruits become unfit for consumption due to loss of quality and hence, lost their market value. Although, insecticidal control is one of the common means against the fruit borer, many of the insecticides applied are not effective in the satisfactory control of this pest. Brinjal being a vegetable crop, use of chemical insecticides will leave considerable toxic residues on the fruits. Beside this, sole dependence on insecticidal resistance by the pest (Natekar *et al.*, 1987 and Harish *et al.*, 2011).

Hence, there is an urgent need to look for alternate and safer methods. In order to evolve and design pest control & management practices based on sound ecological footing and economically feasible, information on the pest complex is a pre requisite. Hence, efficacy and economic of insecticides & bio-pesticides against major insect pest complex of Brinjalare very essential to

^{*}Author for correspondence: E-mail: prajapatisunil4960@gmail.com

adopt suitable control measures in a particular region.

Materials and Methods

The present investigation entitled, "Assessment the efficacy and economic of insecticides & bio pesticides against major insect pest complex of brinjal (*Solanum melongena* Linn.) *cv.* JB-64" was carried out in Randomized Block Design with 4 replications. Knapsack sprayer was used (water required for spraying 300 liter / ha & Spraying No. 3 (11th and 23th February, 2nd April, 2013).

Treatment details

(A) Efficacy of insecticides against major insect pest complex of brinjal:

Code	Treatments	Dose (gorml) a.i./ha
T ₁	Difenthiuoron 50%WP :	600
T_2	Emamectin Benzoate 5% SG :	200
$\tilde{T_3}$	Pyriproxifen 10% EC :	500
T ₄	Pyriproxifen 5%+ Fenpropathrin	
•	15% EC :	500
T ₅	Rynaxypyr 20 EC :	150
T ₆	Control :	-

(B) Efficacy of Bio pesticides against major insect pest complex of brinjal:

Code	Treatments	Formulation/ha
T ₁	Passilomyces fumosoresus	: 1×10^{12} spores/ml
Τ,	Beauveria bassiana	: 1×10^{12} spores/ml
$\tilde{T_3}$	Metarhizium anisopliae	: 1×10^{12} spores/ml
Ť₄	Verticillium lecanii	: 1×10^{12} spores/ml
T ₅	Neem soap	: 10 g/L
T ₆	Pongamia soap	: 10 g/L
\mathbf{T}_{7}°	Control (Untreated)	: -

Methods of Observation

Pre-treatment observations on brinjal pest complex were recorded 24 hours before spraying, while posttreatment observations were taken 3, 7 and 10 days after application of the treatment. Observation on brinjal sucking pest & shoot and fruit borer were recorded on 5 randomly selected plants plot⁻¹. Fruit infestation by shoot and fruit borer was assessed by counting the total number of damage and healthy shoot fruit⁻¹ at each picking per plot.

Percent shoot/fruit infestation =	Total no. of damage shoots fruit ⁻¹ × 100
referre shout if the intestation -	Total no. of healthy and damageshoot fruit ¹

The mean data on sucking pest complex were

transformed to square root transformed values and statistically analysed as per the method given by Snedecor and Cochran (1967).

The percentage data on damaged fruits and fruit yield loss data were transformed to arcsin transformation and statistically analysed as per the method given by Snedecor and Cochran (1967).

Results and Discussion

(A) Efficacy of insecticides against major insect pest complex of brinjal

1. Jassid : The efficacy of five insecticides named Difenthiuron 50% WP 300 g.a.i./ha, Emamectin benzoate 5% SG 10 g.a.i./ha, Pyriproxifen 10% EC 50 g.a.i./ha, Pyriproxifen 10% EC + Fenpropethrin 15 %EC 500 ml/ ha, Rynaxypyr 20% EC 30 g.a.i./ha. were tested against insect pest complex on brinjal.

On the basis of overall mean (mean of three spraying) all the insecticidal treatments significantly reduced the infestation and registered higher fruit yields as compared to untreated control Emmamectin Benzoate (a) 10 g.a.i/ ha was found to be the most effective as it recorded lowest infestation which was significantly better than Pyriproxifen 10% EC (a) 50 g.a.i./ha and control. Similar finding have been reported by several workers (Anil and Sharma, 2008; Dutta *et al.*, 2007).

2. White fly : The result of present study showed that Emamectin Benzoate 5% SG @10 g.a.i/ha was found to be the most effective which was significantly better than all the treatments except Pyriproxifen 10% EC + Fenpropethrin 15% EC 500 ml/ha., Rynaxypyr 20% EC @ 30 g a.i./ha., similar findings have been reported by Anil and Sharma (2008), Dutta *et al.* (2007) and Adiroubane and Raghuraman (2008).

3. Aphid : The result of present study showed that Emamectin Benzoate 5% SG @10 g.a.i/ha was found to be the most effective and significantly better than all the insecticidal treatments but at par with Pyriproxifen 10% EC + Fenpropethrin 15% 500 ml/ha. Similar findings have been reported by Anil and Sharma (2008), Dutta *et al.* (2007) and Adiroubane and Raghuraman (2008).

4. Shoot and fruit borer : The result of present study showed that Emmamectin Benzoate (a) 10 g.a.i/ha in which was significantly better than all the insecticidal treatment followed by Pyriproxifen 10% EC + Fenpropethrin 15% EC 500 ml/ha, Rynaxypyr 20% EC (a) 30 g a.i./ha. The maximum percent fruit damage was recorded in control. Similar finding have been reported by Wankhedeet al. (2009), Misra *et al*. (2011) as emamectin benzoate (Proclaim 5 SG; 200 g/ha) was the

Table 1	Table 1 : Efficacy of different insecticides against brinjal Jassid during Rabi 2012-13.	id during Rabi 20	12-13.					
			2	lean of jassid	Mean of jassid nymph and adult population / 6 leaves	idult populati	on / 6 leaves	
					Mean of th	Mean of three sprayings		
Tr. no.	Tr. no. Treatments	Dose g.a.i/ha	Pre Treatment		Days aft	Days after spraying		Overall mean
				1	3	7	10	
Ţ	Difenthiuron 50% WP	300	3.69 (1.92)	1.68(1.30)	2.70 (1.64)	2.43 (1.55)	2.48 (1.57)	2.32(1.52)
\mathbf{T}_2	Emamectin benzoate 5%SG	10	3.27(1.80)	1.07(1.03)L	1.07(1.03)L 2.22(1.49)L 2.16(1.47)L	2.16(1.47)L	2.21(1.49)L	1.92(1.38)L
\mathbf{T}_{3}	Pyriproxifen 10% EC	50	3.83 (1.95)	1.34(1.15)	2.84(1.68)	2.65(1.63)	2.70 (1.64)	2.38(1.54)
\mathbf{T}_{4}	Pyriproxifen 10% EC + Fenpropethrin 15% EC	500 ml/ha	3.41 (1.85)	1.10(1.05)	2.36(1.53)	2.21 (1.49)	2.25(1.50)	1.98(1.40)
°2	Rynaxypyr 20% EC	30	3.54 (1.88)	1.30 (1.14)	1.30 (1.14) 2.47 (1.57)	2.36 (1.53)	2.41 (1.55)	2.14(1.46)
T,	Control (Untreated)	ı	4.05 (2.01)H	4.10(2.02)H	4.10(2.02)H 4.12(2.03)H 4.22(2.05)H	4.22 (2.05)H	4.26 (2.06)H	4.18(2.04)H
	S.Em.±	ı	0.10	60:0	0.07	0.04	0.06	0.04
	CD at 5%	ı	NS	0.29	0.22	0.13	0.17	0.14

Table 2 : Efficacy of different insecticides against brinjal Aphid during Rabi 2012-13.

			M	Mean of aphid nymph and adult population / 6 leaves	nymph and a	dult populatio	n / 6 leaves	
					Mean of th	Mean of three sprayings		
Tr. no.	Tr. no. Treatments	Dose g.a.i/ha	Pre Treatment		Days aft	Days after spraying		Overall mean
				1	3	7	10	
Ţ	Difenthiuron 50% WP	300	15.62 (3.92)	5.03 (2.24)	6.04 (2.45)	5.98 (2.44)	6.06 (2.46)	5.78(2.40)
\mathbf{T}_2	Emamectin benzoate5%SG	10	15.29(3.91)	4.48 (2.08) L	5.45 (2.33)L	4.48 (2.08) L 5.45 (2.33) L 5.32 (2.31) L	5.38(2.32) L	5.16(2.26) L
\mathbf{T}_{3}	Pyriproxifen 10% EC	50	15.96(3.99)	4.63 (2.15)	6.25 (2.50)	6.26 (2.50)	6.18 (2.49)	5.83 (2.41)
\mathbf{T}_{4}	Pyriproxifen 10% EC+Fenpropethrin 15 EC	500 ml/ha	15.42 (3.93)	4.55 (2.13)	5.83 (2.41)	5.83 (2.41) 5.75 (2.40)	5.82 (2.41)	5.49(2.34)
T,	Rynaxypyr 20% EC	30	15.57 (3.95)	4.57 (2.14)	6.05 (2.46)	5.95 (2.44) 6.04 (2.46)	6.04 (2.46)	5.65 (2.38)
Ľ	Control (Untreated)	ı	16.16(4.02)	7.13 (2.67) H	7.14 (2.67) H	7.13(2.67) H 7.14(2.67) H 7.06(2.66) H 7.41(2.72) H	7.41 (2.72) H	7.19(2.68) H
	S.Em.±	I	0.13	0.36	0.07	0.02	0.03	0.03
	CD at 5%	I	NS	1.08	0.21	0.06	0.08	0.09

Assessment the Efficacy and Economic of Insecticides and Bio-pesticides

\mathbf{c}
-
12-1
01
2
bi
a
R
uring
efly d
whit
al
Ē
bri
against brinjal wh
t insecticides
÷
fdifferen
0
: Efficacy
~
E.
able 3

Table 3	Table 3 : Efficacy of different insecticides against brinjal whitefly during $Rabi 2012-13$.	efly during Rabi 2	012-13.					
			W	ean of whitef	Mean of whitefly nymph and adult population / 6 leaves	adult popula	tion / 6 leaves	
					Mean of th	Mean of three sprayings		
Tr. no.	Tr. no. Treatments	Dose g.a.i/ha	Pre Treatment		Days aft	Days after spraying		Overall mean
				1	e S	7	10	
$\mathbf{T}_{\mathbf{I}}$	Difenthiuron 50% WP	300	3.75 (1.94)	1.38(1.17)	3.40 (1.84)	3.51 (1.87)	3.54 (1.88)	3.00(1.73)
\mathbf{T}_2	Emamectin benzoate5%SG	10	2.88 (1.68)	1.23 (0.99)L	1.23(0.99)L 2.71(1.60)L 2.61(1.61)L	2.61 (1.61)L	2.54(1.59)L	2.27 (1.49) L
\mathbf{T}_{3}	Pyriproxifen 10% EC	50	3.85 (1.95)	1.43(1.19)	3.76(1.94)	3.68(1.92)	3.71 (1.93)	3.15(1.74)
\mathbf{T}_4	Pyriproxifen 10% EC+Fenpropethrin 15 EC	500 ml/ha	3.23 (1.75)	1.29(1.05)	2.97(1.72)	2.92(1.71)	2.86(1.69)	2.51 (1.56)
°,	Rynaxypyr20%EC	30	3.48 (1.86)	1.33(1.14)	3.16(1.78)	3.06 (1.75)	3.03(1.74)	2.65(1.61)
T,	Control (Untreated)	I	4.45 (2.11) H	3 .80(1.91) H	3 .80(1.91) H 4.50(2.12) H	4.42 (2.10) H	4.50(2.12) H	4.31 (2.07) H
	S.Em.±	I	0.10	0.17	0.09	0.02	0.02	0.05
	CD at 5%	I	NS	0.51	0.27	0.06	0.06	0.16

Table 4 : Efficacy of different insecticides against brinjal shoot
and fruit borer infestation during Rabi 2012-13.

Tr.	Treatment	Dose g.a.i/ha	Fruit infestation by shoot and fruit borer (%)*
T ₁	Difenthiuron 50% WP	300	2.40 (8.82)
T ₂	Emamectin benzoate 5%SG	10	0.92 (5.41) L
T ₃	Pyriproxifen 10% EC	50	2.68 (9.33)
T ₄	Pyriproxifen 10% EC + Fenpropethrin 15% EC	500 ml/ha	1.43 (6.80)
T ₅	Rynaxypyr 20% EC	30	1.70 (7.44)
T ₆	Control (Untreated)	-	10.94(19.27)H
	S.Em.±	-	0.21
	CD at 5%	-	0.62

most effective in reducing the shoot damage by the brinjal shoot and fruit borer.

Economics of treatments

Fruit yield : In present study, Emamectin benzoate 5% SG @ 10 g.a.i./ha recorded significantly higher healthy fruit yield (120.66 g/ha) than other treatments, followed by Pyriproxifen 10% EC + Fenpropethrin 15% EC @ 500 ml/ha (115.47 q/ha), Rynaxypyr 20% EC @ 30 g.a.i./ha (111.68 q/ha), Difenthiuron 50% WP @ 300 g.a.i./ha (108.41 q / ha and Pyriproxifen 10% EC 50 g.a.i./ ha (91.66 q/ha). Similar finding have been reported by Adiroubane and Raghuraman (2008) and Dutta et al. (2007).

Net profit : Among the different treatments, highest net profit per hectare was registered in Emmamectin Benzoate @ 10 g.a.i/ha (Rs. 54572/-), followed by Pyriproxifen 10% EC + Fenpropethrin 15% EC @ 500 ml/ha (52082/-), Rynaxypyr 20% EC @ 30 g.a.i./ ha(42442/-), Difenthiuron 50% WP @ 300 g a.i./ha (42442/-) and Pyriproxifen 10% EC 50g.a.i./ha (29547/-).

Cost benefit ratio : Among the different treatments, highest cost benefit ratio was registered in Pyriproxifen 10% EC + Fenpropethrin 15% EC @ 500 ml/ha (1:15.69) followed by Pyriproxifen 10% EC 50 g.a.i./ha (1:14.46), Emmamectin Benzoate @ 10 g.a.i/ha (1:9.06), Difenthiuron 50% WP @ 300 g.a.i./ha(1:7.19) and Rynaxypyr 20% EC @ 30 g.a.i./ha (1:6.79).

B. Efficacy of biopesticides against major insect pest complex of brinjal

1. Jassid : The efficacy of six microbials named Passilomycesfumosoresus @ 1 l/ha, Beauveria

È	Treatment details	Daga	Fruit viold	Increased in	Cast of	Cost of	Cost of	Not nrafit	Cost
i		g <i>a.i.</i> /h		yield over control (q/ha)	0	treatments*	increased yield over control @ 500 /- per quintal	(Rs/ha)	benefit ratio
F	T ₁ Difenthiuron 50% WP	300	108.41	48.34	2600/-Rs/kg	5898	48340	42442	1:7.19 L
\mathbf{T}_{2}	Emamectin benzoate5%SG	10	120.66 H	H65.09	8000/- Rs / kg	6018	H 06509	54572	1:9.06 H
\mathbf{T}_{3}	T ₃ Pyriproxifen 10% EC	50	91.66	31.59L	550/-Rs/1	2043	31590L	29547	1:14.46
\mathbf{T}_{4}	T_4 Pyriproxifen 10% EC + Fenpropethrin 15% EC 500 ml/ha	500 ml/ha	115.47	55.40	1400/- Rs/1	3318	55400	52082	1:15.69
T,	T ₅ Rynaxypyr 20% EC	30	111.68	51.61	12000/- Rs/1	6618	51610	44992	1:6.79
Ľ	T ₆ Control (Untreated)	ı	60.07 L	1			1	·	ı
	Em±	0.13							
	CD at 5%	0.38							

 Table 5 : Economics of different insecticides on pest complex of brinjal during Rabi 2012-13.

bassiana @ 1 l/ha, Metarrhizium anisopliae @ 1 l/ha, Verticillium lecanii @ 1 l/ha, Neem soap @ 2.5 Kg/ha, Pongamia soap @ 2.5 Kg/ha.

In present study, *Passilomyces fumosoresus* (a) 11/ ha were found to be the most effective, which was significantly better than *Verticillium lecanii* (a) 11/ha *Metarrhizium anisopliae* (a) 11/ha and Pongamia soap (a) 2.5 Kg/ha but at par with *Beauveria bassiana* (a) 11/ ha and Neem soap (a) 2.5 Kg/ha. In the present study, among the microbials *Verticilium lecanii* (a) 2.5 kg/ha was the least effective against brinjal jassid. The present studies collaborate with the finding of Birla (2011).

2. Aphid : In present study, *Passilomyces fumosoresus* @ 11/ha spores/ml was found to be the most effective treatment, which was significantly better than all the treatment except *Beauveria bassiana* @ 11/ha, followed by Neem soap @ 2.5 Kg/ha, which was significantly better than Pongamia soap @ 2.5 Kg/ha, but at par with *Verticilliumlecanii* @ 11/ha and *Metarrhizium anisopliae* @ 11/ha.

3. Whitefly : In present study, *Passilomyces fumosoresus* (*a*) 11/ha was found to be the most effective, which was significantly better than all the biopesticidal treatments, followed by *Beauveria bassiana* (*a*) 11/ha which was significantly better than *Metarrhizium anisopliae* (*a*) 11/haand Pongamia soap (*a*) 2.5 Kg/ha but at par with Neem(*a*) 2.5 Kg/ha and *Verticillium lecanii* (*a*) 11/ha. Neem soap and *Verticillium lecanii* were also significantly better than pongamia soap.

4. Shoot and fruit borer: On the basis of overall mean, the differences in the percent fruit damage among different treatments were significant. All the microbial treatments significantly reduced the fruit damage and registered higher fruit yields as compared to untreated control. Several workers have also reported similar findings, as application of microbials effectively reduced the fruit damage due to *L. orbonalis* with increased fruit yields than control (Mahesh and Men, 2007b; Singh and Yadav, 2007; Gautam *et al.*, 2008; Adiroubane and Raguhuraman, 2008; Naik *et al.*, 2008c; Ghosh and Senapati, 2009; Gopal *et al.*, 2009a, 2009b and Pareet and Basavanagoud, 2009).

In present study, *Passilomyces fumosoresus* @ 11/ ha, which was significantly better than all the biopesticides tested excepted *Beauveria bassiana* @ 11/ha. Neem soap @ 2.5 Kg/ha was also significantly better than Pongamia soap @ 2.5 Kg/ha, but at par with *Verticillium lecanii* @ 11/ha and *Metarrhizium anisopliae* @ 1 l/ha. Present finding are supported by several workers *viz*. Mahesh and Men (2007b) and Gopal *et al.* (2009b). They

			Μ	ean of Jassid ny	mph and adult p	opulation / 6 lea	ves
				Me	an of three spray	vings	
Tr.	Treatments	Dose/ha		D	ays after sprayi	ng	
			Pre-treatment	3	7	10	Overall mean
T ₁	Passilomyces fumosoresus	11	2.90(1.66)	3.27(1.80)	3.18(1.78)	2.59(1.60)	3.08(1.75)
T ₂	Beauveria bassiana	11	3.39 (1.84)	3.31 (1.82)	3.21 (1.79)	3.26(1.80)	3.26(1.81)
T ₃	Metarrhizium anisopliae	11	4.21 (2.03)	3.70 (1.92)	3.61 (1.90)	3.29(1.81)	3.53 (1.88)
T ₄	Verticillium lecanii	11	3.66(1.91)	3.55(1.88)	3.43 (1.85)	3.26(1.81)	3.41 (1.85)
T ₅	Neem soap	2.5 Kg	3.58(1.89)	3.47(1.86)	3.30(1.82)	3.17(1.78)	3.31 (1.82)
T ₆	Pongamia soap	2.5 Kg	3.92(1.96)	3.88(1.97)	3.81 (1.95)	3.35(1.83)	3.68 (1.92)
T ₇	Control (Untreated)	-	4.01 (2.00)	4.04(2.01)	4.36(2.09)	4.20 (2.05)	4.20 (2.05)
	S.Em.±	-	0.13	0.02	0.03	0.06	0.02
	CD at 5%	-	NS	0.08	0.10	0.19	0.08

 Table 6 : Efficacy of different biopesticides against brinjal Jassid during Rabi 2012-13.

 Table 7 : Efficacy of different Biopesticides against brinjal aphid during Rabi 2012-13.

			Μ	ean of aphid ny	mph and adult p	opulation / 6 leav	/es
				Me	an of three spray	ying	
Tr.	Treatments	Dose/ha		D	ays after sprayi	ng	
			Pre-treatment	3	7	10	Overall mean
T ₁	Passilomyces fumosoresus	11	16.02 (3.97)	13.92(3.73)	11.39 (3.38)	9.49 (3.08)	11.60 (3.40)
T ₂	Beauveria bassiana	11	16.23 (4.03)	14.08(3.75)	11.99 (3.46)	10.05(3.17)	12.04 (3.46)
T ₃	Metarrhizium anisopliae	11	16.97 (4.12)	14.61(3.82)	12.45 (3.53)	10.42(3.23)	12.49 (3.53)
T ₄	Verticillium lecanii	11	16.70 (4.09)	14.35(3.79)	12.21(3.49)	10.41(3.23)	12.32 (3.50
T ₅	Neem soap	2.5 Kg	16.46 (4.06)	14.16(3.76)	11.94 (3.46)	10.29 (3.21)	12.13 (3.48)
T ₆	Pongamia soap	2.5 Kg	17.03 (4.13)	14.48 (3.81)	12.75 (3.57)	10.81(3.29)	12.68 (3.55)
T ₇	Control (Untreated)	-	17.53 (4.18)	15.34 (3.92)	13.11 (3.62)	12.02 (3.47)	13.49 (3.67)
	S.Em.±	-	0.15	0.01	0.02	0.02	0.02
	CD at 5%	_	NS	0.04	0.05	0.07	0.06

Table 8 : Effi	cacy of different	biopesticides	against b	rinjal wl	hitefly dur	ing Rabi 2012-13.
----------------	-------------------	---------------	-----------	-----------	-------------	-------------------

Tr. no.	Treatments		Mean of whitefly nymph and adult population / 6 leaves						
		Dose/ha	Days after spraying						
110.			Pre-treatment	3	7	10	Overall mean		
T ₁	Passilomyces fumosoresus	11	3.14(1.77)	3.03(1.73)	2.78(1.67)	2.95(1.71)	2.92(1.71)		
T ₂	Beauveria bassiana	11	3.54(1.88)	3.46(1.86)	3.35(1.83)	3.40 (1.84)	3.40(1.84)		
T ₃	Metarrhizium anisopliae	11	3.75(1.94)	3.68(1.92)	3.57(1.89)	3.43 (1.85)	3.56(1.89)		
T ₄	Verticillium lecanii	11	3.69(1.92)	3.59(1.89)	3.50(1.87)	3.38(1.84)	3.49 (1.87)		
T ₅	Neem soap	2.5 Kg	3.67(1.91)	3.55(1.88)	3.44(1.85)	3.34(1.83)	3.44 (1.86)		
T ₆	Pongamia soap	2.5 Kg	3.89(1.96)	3.78(1.94)	3.64 (1.91)	3.80(1.95)	3.74 (1.93)		
T ₇	Control (Untreated)	-	4.07(1.97)	4.48(2.12)	4.38 (2.09)	4.31 (2.08)	4.39(2.10)		
	S.Em.±	-	0.11	0.05	0.02	0.04	0.01		
	CD at 5%	-	NS	0.16	0.07	0.14	0.03		

Tr. no.	Treatment	Dose / ha	Fruit infestation by shoot and fruit borer (%)*
T ₁	Passilomyces fumosoresus	11	1.51 (6.95)
T ₂	Beauveria bassiana	11	1.90(7.78)
T ₃	Metarrhizium anisopliae	11	3.92(11.34)
T ₄	Verticillium lecanii	11	3.49(10.68)
T ₅	Neem soap	2.5 Kg	3.04 (9.92)
T ₆	Pongamia soap	2.5 Kg	6.85(14.93)
T ₇	Control (Untreated)	-	10.89 (19.20)
	S.Em.±	-	0.74
	CD at 5%	-	2.22

Table 9: Efficacy of different biopesticides against brinjal shoot and fruit borer infestation during Rabi 2012-13

Table 10: Economics of different biopesticides on pest complex of brinjal on during Rabi 2012-13.

Tr. no.	Treatment details	Dose/ ha	Fruit yield	Increase in yield	Cost of	Cost of	Cost of increased	Net profit	Cost benefit
			(q/ha)	over control (q/ha)	insec- ticide	treatm- ents*	yield over control @ 500 /- per quintal	(Rs/ha)	ratio
T ₁	Passilomyces fumosoresus	11	85.06 H	24.99	700 /- Rs/Kg	3318	24990 H	21672 H	1:6.53 H
T ₂	Beauveria bassiana	11	80.05	19.98	700 /- Rs/Kg	3318	19980	16662	1:5.02
T ₃	Metarrhizium anisopliae	11	69.08	9.01	700 /- Rs/Kg	3318	9010	5692	1:1.71
T ₄	Verticillium lecanii	11	70.06	9.99	700 /- Rs/Kg	3318	9990	6672	1:2.01
T ₅	Neem soap	2.5Kg	72.07	12.00	240/- Rs/lit	3010	12000	8982	1:2.97
T ₆	Pongamia soap	2.5 Kg	68.06	7.99	320/-Rs/lit.	3618	7990 L	4372 L	1:1.20 L
T ₇	Control (Untreated)	-	60.07L	-	-	-	-	-	-
	S.Em.±		0.02						
	CD at 5%		0.05						

* Mean of 6 picking, Labour rate per day = (Two labours required for spraying 1 ha brinjal crop in 1 day), Yield rate: Rs = 1000 / - per quintal @ Rs = 203 / -, L = Lowest, H = Highest.

also reported that *Bacillus thuringiensis* var. *kurstaki* @ 0.05% to 0.25 or 2.0 to 2.5 ml/L or 1 L/ha were found effective in reducing the fruit infestation due to *L. orbonalis*. In the present study, the next effective group of treatments were *Verticilium lecanii* @ 3.75 kg/ha, *Metarhizium anisopliae* @ 2.5 kg/ha, followed by *Verticilium lecanii* @ 3.25 kg/ha, but did not differ significantly from each other. The next but least effective treatment was, *Beauveria bassiana* @ 1 kg/ha, *Beauveria bassiana* @ 1 kg/ha, *Beauveria bassiana* @ 1.5 kg/ha and was found to be significantly superior to control.

Economics of treatments

Increase in yield over control : Among the different treatments, highest increase in fruit yield over control was registered in *Passilomyces fumosoresus* (a) 11/ha (24.99 q/ha) followed by *Beauveria bassiana* (a)

11/ha (19.18 q/ha).

Net profit : Among the different treatments, highest cost benefit ratio was registered in *Passilomyces fumosoresus* (*a*) 11/ha (Rs. 21672/ha), this was followed by *Beauveria bassiana* (*a*) 11/ha (Rs. 16662) and Pongamia soap (*a*) 2.5 Kg/ha recorded the lowest net profit (Rs. 4372/ha) among different biopesticides tested.

Cost benefit ratio : Among the different treatments, highest net profit per hectare was registered in *Passilomyces fumosoresus @* 11/ha (1:6.53), *Beauveria bassiana @* 11/ha (1:15.02), Neem soap *@* 2.5 Kg/ha (1:2.97), *Verticillium lecanii @* 11/ha (1:2.01) and *Metarhizium anisopliae @* 11/ha (1:1.71), Pongamia soap *@* 2.5 Kg/ha (1:1.20).

Conclusion

The study of present investigation concluded that on the basis of the efficacy of different insecticidal treatments against pest complex, Emamectin benzoate @ 10 g.a.i/ ha was found to be most effective as it recorded lowest infestation, of all the recorded pests followed by Pyriproxifen + fenpropethrin 500 ml/ha Highest fruit yield was registered in Emamectin Benzoate @10 g.a.i/ha (120.66 q / ha), followed by Pyriproxifen + fenpropethrin 500 ml/ha (115.47 q / ha) as compared to control (60.07 q/ha). On the basis of the efficacy of different biopesticides treatments Passilomyces fumosoresus @ 11/ha was found to be the most effective as it recorded lowest infestation of all recorded pests followed by Beauveria bassiana @ 11/ha. Highest fruit yield was registered in Passilomyces fumosoresus @ 11/ha (85.06 q/ha) followed by Beauveria bassiana @ 11/ha (80.05/ ha).

References

- Anil and Sharma (2008). Bio efficacy of insecticides and microbials against pest complex of brinjal. J. of Envi. Biology, 3(1): 399-402.
- Adiroubane, D. and K. Raghuraman (2008). Plant products and microbial formulation in the management of brinjal shoot and fruit borer, *Leucino desorbonalis* (Guenee). J. Biopest., 1(2): 124-129.
- Birla, M. (2011). Studies on insect pest complex of brinjal, Solanum melongena (Linn.) and their management. M.Sc. (Ag.) Thesis submitted to JNKVV Jabalpur (MP) pp. 1-72.
- Chakraborti, Sudarshan and Pijush Kanti Sarkar (2011). Management of *Leucino desorbonalis* Gunee on egg plants during the rainy season in India. *J. Pl. Protec. Res.*, **51(4)**: 325-328.
- Dutta, N. K., M. S. Alam, M. Nasiruddin, A. K. Das and T. S. Munmun (2007). Efficacy of some new chemical insecticides against Brinjal Shoot & Fruit Borer (*Leucinodes orbonales* Guen.). J. of Subtropical Agri. Res. and Devel., 5(3): 301-304.
- Ghosh, S. K. and S. K. Senapati (2009). Seasonal fluctuation in the population of *Leucinodes orbonalis* (Guen.) in the sub-Himalayan region of West Bengal, India and its control on eggplant (*Solanum melongena* L.). *Precision Agriculture*, **10(5)**: 443-449.
- Gopal, Madhuban, Chitra Srivastava and Jayakrishnan Saimandir (2009). IPM package for brinjal shoot and fruit borer (*Leucino desorbonalis* Guen.). Proceedings of the National Symposium on "IPM strategies to combat emerging pests in the current scenario of climate change". January 29-30, 2009, College of Horticulture and Forestry,

Central Agricultural University, Pasighat, Arunachal Pradesh.

- Harish, D. K., A. K., Agasimani, S. J. Imamsaheb and Satish S. Patil (2011). Growth and yield parameters in brinjal as influenced by organic nutrient management and plant protection conditions. *Res. J. Agri. Sci.*, 2(2): 221-225.
- Jagginavar, S. B., N. D. Sunitha and A. P. Biradon (2009). Bioefficacy of flubendiamide 480 SC against brinjal shoot and fruit borer, *Leucin doesorbonalis* (Guen.). *Kar. J. Agri. Sci.*, 22(3):712-713.
- Mahesh, P. and U. B. Men (2007). Effect of Bt formulations on yield of brinjal by managing, *Leucino desorbonalis. Ann. Pl. Protec. Sci.*, **16(2)** : 490-491.
- Misra, H. P. (2011). Bio-efficacy of chlorantraniliprole against shoot and fruit borer of brinjal, *Leucino desorbonalis* Guenee. J. of Insect Science (Ludhiana), **24(1)**: 60-64.
- Naik, V. C. B., P. A. Rao, P. V. Krishnayya and V. S. Rao (2008). Seasonal incidence and management of spotted leaf beetle, *Heno sepilachna viginotiocto punctata* (F.) in brinjal. J. *Appl. Zool. Res.*, **19(1)** : 1-4.
- Natekar, M. G., Samarjit Rai and N. P. Agnihotri (1987). Bioefficacy of synthetic pyrethroids and their residues in brinjal fruit. *Pestology*, **11(6)**:18-22.
- Pareet, J. D. and K. Basavanagoud (2009). Evaluation of biopesticides against brinjal shoot and fruit borer and sucking pests. *Ann. Pl. Prot. Sci.*, **17(2)** : 463-464.
- Reddy, Eswara and S. G. Srinivas (2004). Management of shoot and fruit borer, *Leucin doesorbonalis* (Guen.) in brinjal using botanicals/oils. *Pestology*, 28(5): 50-52.
- Regupathy, A., S. Palanisamy, N. Chandramohan and K. Gunathilagaraj (1997). Aguide on crop pests. Sooriya Desk Top Publishers, Coimbatore, 264 P.
- Singh, K. I., S. Athokpam, M. P. Singh and P. S. Devi (2007). Comparative efficacy of certain bio-rational insecticides and endosulfan against *Leucino desorbonalis* Guenee in brinjal crop. *Indian J. Ent.*, 69(3): 250-255.
- Snedecor, G. W. and W. G. Cochran (1967). *Statistical Methods*, Oxford and IBH Publishing Company, New Delhi, pp: 1-292.
- Suroshe, S. S., K. D. Reddy and K. N. Reddy (2004). Bio-efficacy of certain insecticides against major insect pests of brinjal. *Journal of Research ANGRAU*, 32(4): 18-24.
- Veeravel, R. and P. Baskaran (1995). Succession of insectpests of brinjal (Solanum melongena) under unsprayed conditions. Bulletin of Entomology, New Delhi, 36(1/2): 49-56.
- Wankhede, S. M., V. D. Kale and S. M. Gangurde (2009). Evaluation of bio-efficacy and persistence toxicity of some novel insecticides against larvae of the brinjal shoot and fruit borer, *Leucino desorbonalis* Guenee. *Pest Management and Economic Zoology*, 17(1): 77-83.